
Active Hierarchical Imitation and Reinforcement
Learning in Continuous Tasks

Yijun Gu
School of Computer Science

Georgia Institute of Technology
yjgu@gatech.edu

Yaru Niu
School of Electrical and Computer Engineering

Georgia Institute of Technology
yaruniu@gatech.edu

Zuoxin Tang
School of Computer Science

Georgia Institute of Technology
ztang315@gatech.edu

Abstract—For tasks with sparse reward and long horizon,
for example, maze navigation of a complex agent in our case,
it is hard to learn useful policies directly with Reinforcement
Learning (RL). In order to tackle this problem, we propose to
use a hierarchical structure. The low-level controller interacts
directly with the environment, and the high-level controller
generates subgoals for the low-level controller to follow. We
propose to use Data Aggregation Method (DAgger) with human
demonstrators so that the agent can transfer to new tasks quickly
with a pre-trained low-level policy. On top of that, we also test
different ways of uncertainty calculation for active learning and
apply it to the DAgger learning process. For the generalization
ability of the agent, we experiment on ways to enhance the
agent’s perception ability with a computer vision-based method,
for example, a visual autoencoder.

Index Terms—Imitation Learning, Hierarchical Reinforcement
Learning, Active Learning

I. INTRODUCTION

Both Hierarchical Reinforcement Learning (HRL) and Im-
itation Learning (IL) can be very efficient in an appropriate
setting. IL can be very efficient if we have an oracle or human
demonstrator with (near) optimal performance. In [31], Sun
and Bagnell compare the theoretical bound of performance
for both RL and IL under some simple cases, and they show
IL outperforms RL for a polynomial factor in general Markov
Decision Process (MDP). It also has been shown that some
temporal abstraction in HRL can help the agent to explore in
more semantically meaningful action space, and thus improve
the sample efficiency of whole RL algorithm [25].

Does combining two approaches further help us in complex
tasks? In Hierarchical Imitation and Reinforcement Learning
(HIRL) [20], the authors combine both methods in discrete
state-action space, together with some strategies that restrict
the place where learning occurs. They show that their approach
can decrease the expert’s cost in training the agent, therefore,
outperform other hierarchical approaches. In this work, we use
a similar approach as in HIRL: training high-level controller
with IL and training low-level controller with RL. Since our
task, the navigation problem with a complex agent is in
continuous state and action space, we cannot directly apply
HIRL.

In the continuous setting, we often want to learn a set of
policies together that is parameterized by the goal, and the
problem is often referred to as contextual policy learning or

multi-task learning. Some typical examples are locomotion
task and robot arm manipulation task like [1], [27]. In our
task, both the high-level controller and low-level controller
are parameterized by their goal. Training such a policy is
time-consuming. The model training in [27] requires several
days of computation. As mentioned above, we expect that the
agent can learn fast if it combines IL and uses a hierarchical
structure. To further increase sample efficiency in this setting,
we adopt an active learning method and compare it with
directly applying DAgger [29] on the high-level controller.

As done in [27], we want to use some visual system so
that the agent can avoid obstacles instead of blindly following
a specific path. In our efforts to train the agent with some
perception ability, we also obtain some empirical results of
state-space embedding as well as training visual autoencoder.
Although we do not achieve our expected goals, we analyze
the possible reasons for failures for further improvement.

Fig. 1. AHIRL System Module

II. RELATED WORK

A. Dataset Aggregation

Sequential prediction problems arise commonly in practice.
Ross and Bagnell propose an iterative meta-algorithm DAgger
[29], which trains a stationary deterministic policy, that can
be seen as a no-regret algorithm in an online learning setting.
The approach is guaranteed to perform well under its induced



distribution of states. We incorporate the approach into our
hierarchical settings. Other frameworks develop from DAgger
like [31] can even outperform expert’s performance, we do not
use it because it is hard for humans to give an estimation of
expected cost-to-go or sample an accurate value of it within a
small number of roll-outs.

B. Hierarchical Reinforcement Learning

Building agents that can learn hierarchical policies is a long-
standing problem in Reinforcement Learning, for example,
decompose MDP into smaller MDPs [7] or Feudal RL that
introduces spacial or temporal abstraction into the learning
process [6]. Some theoretical results are given, where we
can adopt options into MDPs and then obtain a semi-Markov
decision process for high-level policies so that the agent will
learn faster [32]. Recently, there are many new pieces of
research that incorporate deep neural networks with hierar-
chical reinforcement learning. There are several automated
HRL techniques that can work in discrete domains [16] with
a manually designed intrinsic reward for low-level policy.
Further works like Option-Critic architecture [3] and FeUdal
Network [34] address the problem of predefined subgoals as
well as extend HRL to continuous space. The main problem
of HRL is that high-level policy learning is unstable due to
the fact that low-level policy is changing. To address this
issue, we can either use Hindsight Experience Replay [1]
which is proposed in Hierarchical Actor-Critic (HAC) [21]
or optimizing the posterior probability of the subgoal given
low-level trajectories [24]. While most of the HRL methods
only use a two-layer structure, HAC extends the framework
to an arbitrary number of layers and each layer can be trained
in parallel. It is further shown that HRL can be regarded as
a multi-agent RL task and the non-stationary problem can be
addressed in this view [15].

C. Neuron Encoder

Deep Neural Networks (DNN) have been quite successful
in unsupervised learning of sparse representations of high-
dimensional image data. This includes pre-training deep net-
works by stacking flat multi-layer perceptions. One of the suc-
cessful techniques in the well-known MNIST letter recognition
tasks is based on a deep autoencoder approach which can
learn a mapping of the raw input information to a condensed
information vector [11], [17]–[19]. Other methods include
learning to predict the next image observation in order to
select an ideal action. [8], [10]. In our task, we want to train a
compressed embedding of our maze configuration which has
rich information so that our agent can take this input and learn
how to avoid obstacles. We expect that, with the concatenation
of agent state and this embedding as enhanced state and with
sufficient training samples, the agent can even learn how to
avoid obstacles in an unseen environment.

D. Active Learning

Active Learning (AL) is a popular approach for classi-
fication in the semi-supervised learning setting. The expert

provides labels only when the agent asks for labels. The
approach aims at saving the expert’s labeling cost and it is
very similar to our goal. In the context of LfD, researchers
have proposed active learning methods based on confidence
calculation [5], [22] or even learn how to active learn [4].
Despite the fact that it is a popular LfD method, we can only
find a few pieces of research on the combination of multi-task
learning and AL [9], [30]. The method we adopt in our task
is inspired by the work in [30], where the author uses AL for
navigation tasks and the agent is selecting tasks (starting and
ending points) for the human demonstrator. We also adopt the
method by Hafner [12], where they use noise contrastive priors
to estimate the reliable uncertainty of the neural networks.

E. Combining RL and LfD

The idea of combining IL and RL is not new [13], [26].
The proposed method Deep Q-Learning from Demonstration
(DQfD) in [13] is taking IL as a ”pre-training” step by pre-
populating the replay buffer with demonstrations. The pre-
populated training examples can be used to warm start the
agent. In HIRL [20], the combination of IL and RL is in
the form of interaction between meta controller and low-
level controller instead of warm start the agent. However, the
previous works [13], [20], [26] only focus on the application
in discrete state and action spaces. In contrast, we build our
pre-training IL and HRL in continuous tasks with continuous
feedback.

III. METHODS

The proposed framework of our work is shown in Figure 1,
consisting of a high-level and a low-level controller, AL part,
and autoencoder. We will describe each part in the following
sections.

A. Hierarchical Imitation and Reinforcement Learning

We introduce a framework Hybrid Hierarchical Imitation
Learning (HHIRL) that can effectively learn the levels in
a multi-level hierarchy in parallel in continuous spaces. We
construct the environment with a two-level hierarchy; the high
level corresponds to choosing subtasks and the low level
corresponds to executing subtasks. We train our high-level
meta-controller using DAgger and low-level controller using a
revised Deep Deterministic Policy Gradient (DDPG) method
[23].

We develop our method mainly from Hierarchical Actor-
Critic (HAC) which is a Hierarchical Reinforcement Learning
(HRL) framework. Meanwhile, we have not found a baseline
combining HIL and RL structures to solve problems in con-
tinuous spaces, so as a whole we will compare our method to
leading HRL frameworks that can work in continuous state and
action spaces, such as HAC and HIRO. We also use DAgger
as our baseline algorithm of the high-level IL hierarchy. The
details of the baselines we have implemented or improved up
to date are described as follows. A high level description is
shown as Algorithm 1.



Algorithm 1 HHIRL
Input: Environment, and pretrained low-level policy
Output: Learned high-level policy

1: Randomly initialize high-level policy πHI
2: Initialize dataset D ← ∅
3: Initialize mixing factor β ← 1.0
4: repeat
5: Sample end goal g and initial state s0 from environment

6: repeat
7: Get (s, π∗(s)) from demonstrator
8: Generate subgoal gLO ← βπHI + (1− β)π∗

9: D ← D
⋃
{(s, a)}

10: Run low-level policy for fix horizon H
11: if Reach update episodes then
12: repeat
13: πHI ← πHI −∇`(s, a)
14: until number of update
15: β ← β/d
16: end if
17: Execute low-level policy for horizon H given gLO
18: until Goal reached or maximum number of action taken
19: until 100 episodes

1) HAC: : HAC trains each hierarchy independently by
training each level as if the lower level policies are already
optimal. It designs the framework with up to three-level
hierarchy and uses an actor-critic method for all levels. To
implement this baseline in the four-room maze environment,
we trained both 2-level and 3-level HAC on a Macbook
with CPU settings. The 2-level HAC was trained with 11949
episodes using about 5 hours, and the 3-level one was trained
overnight. In our test, the success rates for 2-level and 3-level
are roughly 45% and 85%, respectively. In many failure cases,
the subgoals tend to be generated near the walls, which will
make the agent turn over, or even in the walls.

2) DAgger: : To improve the performance of HAC, we
started with the 2-level hierarchical structure and replaced the
high-level RL with IL, which means the human will provide
demonstrations of subgoals. We used DAgger method with
high-level demonstration data (subgoals) collected incremen-
tally and interactively. Since here providing demonstrations
for joint control in lower level is almost impossible, we only
consider using DAgger above the base level.

B. Autoencoder

To enable the agent to generalize the environment and take
action more precisely, we consider construct an embedding
architecture and train our AHIRL algorithm based on both en-
coded embedding information and temporal information. Re-
cently, deep encoder neural networks (e.g. autoencoder) have
shown their effectiveness in many visual analysis tasks as well
as image compression and recognition. Therefore, we build a
deep autoencoder-based embedding architecture for our envi-
ronment information compression. The task of our autoencoder

Fig. 2. Autoencoder Reconstruction Sample Results

is to take visual data as input and learn a mapping of the data
information st to a condensed information vector zt = φ(st).
Our embedding consists of an encoder, a deconvolutional
decoder. We expect this architecture will help the agent adapt
more quickly to the previously unseen environment and reduce
its cost for human demonstration.

1) A neural autoencoder: The encoder network compresses
a space of possible visual data of the environment to a lower d-
dimensional space: χ→ <d. We first resize the raw image data
to 3x64x64 for the input layer using bicubic interpolation. The
input layer is followed by a down-sample max pooling layer
with a 2x2 filter a 2x2 stride. And the pooling layer is followed
by three fully connected layers reducing the number of its
predecessor by a factor of 3, 8, 2. All the fully connected layers
are activated by an Exponential Linear Unit(ELU) function
which tends to converge cost to zero faster and produces more
accurate results and has a weight initialization of mean 0 and
variance 0.12/(inputsize) and a bias initialization of 0.01.
The final output vector of the encoder is 64. The decoder
network produces the reconstructed high dimensional images:
<d → χ. It consists of a fully connected layer and a transposed
deconvolutional layer. The fully connected layer expands the
image from 64 to 34x34x64. And the deconvolutional layer



(a) Example A (b) Example B

(c) Example C (d) Example D

Fig. 3. Examples of the initialized positions that active learning algorithms are very likely to choose

compresses the image channels from 64 to 3 with a kernel
size of 5x5, a stride of 2 and an output padding of 2. And we
crop the decoded images to the same sizes of the input images
and normalize the outputs.

2) Training: We implement our autoencoder model with
Pytorch 10.1. The training set of the deep encoder network
consists of 10000 images of randomly generated environment
settings. Each image has a size of 340 ∗ 340 digit points and
we manually compress the image to a size of 64 ∗ 64 digit
points for our autoencoder model. We use Adaptive moment
estimation (Adam) [14] method to train our network with a
learning rate of 0.00001 and optimization with 20 epochs. We
measure the mean squared error (squared L2 norm) between
each element in the input image data x and reconstructed
image data y as the criterion. Figure 2 shows the result images
of the test samples compressed and reconstructed by our deep
autoencoder. From the results, we can see our autoencoder is
able to generalize the features of the environments (e.g. wall
positions and length) but because of our manual compression,
the reconstructed images are not exactly the same as the
original one and the noise of the reconstructed images is quite
large.

C. Active Learning

1) Encoding to AHIRL: The output-layer of the encoder
network delivers an encoding of the high-dimensional input
image to a sparse representation. We save the encoding as
an embedding into the framework. Every time we train our
AHIRL and randomly generate one environment, we encode
the environment image to a feature vector and add the vector
and the action information together to the state description.

Our AL method is built upon the framework of HHIRL, the
framework is shown as Algorithm 2. Different from the ”model
change” method, we take the idea from epistemic uncertainty,
which is a scientific systematic uncertainty due to limited data
and knowledge. And in continuous spaces, it is intuitive to
measure the uncertainty of the model using the variance of
the output by the policy. In our task, with the aim of choosing
the initialized sub-state (in accordance with the goal state) of
the agent, we design and use two AL methods presented as
follows.

Algorithm 2 AHIRL
Input: Environment, and pretrained low-level policy
Output: Learned high-level policy

Randomly initialize high-level policy πHI
2: Initialize dataset D ← ∅

Initialize mixing factor β ← 1.0
4: repeat

Sample end goal g from environment
6: Sample initial position (initialized sg) by AL

Run HHIRL in the following steps
8: until 100 episodes

2) Noise-Based: In a goal-achieving task, the agent state
and goal state do not have to have the same dimension, and
commonly the agent state dimension should include that of
the goal state. And the noise-based method should be based
on the assumption that adding noise to the sub-dimension of
the agent state should not change the expect of the optimal
action, or it can be meaningless to calculate the variance of
the output.



Let s represent the full dimension state of the agent state, sg
the sub-dimension of the agent state which is consistent with
the goal state. First, we randomly choose a number of sg as the
candidates of the initialized sub-state. Then we add random
uniform noise to other sub-dimension states so of the agent
state rather than sg . Then we can get n agent state regarding
the same sg . Then we choose the sg based on the equation
written as

s∗g = arg max
sg∈Sg

n∑
i=1

[πθ(si(sg))− π̄θi(si(sg))]2 (1)

where Sg is the candidate pool of the sg , and si(·) is the
function to get the state after adding an random uniform noise
to so, and πθ is the current policy. In our task, sg is the
cartesian position of the agent. The algorithm is shown as
Algorithm 4.

Algorithm 3 Noise-based Active Learning
Input: Environment, candidate pool size, and number of

different noises, current high-level policy πθ, end goal g
Output: Initialized position s∗g

Initialize noise buffer N ← ∅
Initialize state dataset S ← ∅

3: repeat
Randomize noise n
N ← N

⋃
{n}

6: until number of different noises
repeat

Randomly choose a position sg from environment
9: repeat

Add noise from N to so
Get new state s

12: S ← S
⋃
{s}

until number of different noises
Compute the variance with S, g and πθ based on
equation (1)

15: Store variance
S ← ∅

until candidate pool size
18: Choose s∗g based on equation (1)

3) Multiple-Policy: Another AL method we have employed
is similar to bagging in ensemble learning. We train n policies
with the same training dataset and test how much these policies
agree given a randomly selected state. This method can be
formally written as

s∗g = arg max
sg∈Sg

n∑
i=1

[πθi(s(sg))− π̄θi(s(sg))]2 (2)

where Sg is the candidate pool of the sg , and s(·) is a fixed
mapping function from sg to , and πthetai is train i policy.

Algorithm 4 Multi-policy Active Learning
Input: Environment, candidate pool size, and number of

different noises, current high-level policy bag {πθi}ni=1,
end goal g

Output: Initialized position s∗g
repeat

Randomly choose a position sg from environment
3: Get new state s

Compute the variance with s, g and {πθi}ni=1 based on
equation (2)
Store variance

6: until candidate pool size
Choose s∗g based on equation (2)

4) Comments: After training for over 200 hundred episodes
with pure DAgger, we use our AL methods to see what kind
of initialized position will be likely to be chosen. Figure 3
shows some examples we usually meet. In Figure 3 (b), (c),
(d), the agent and the goal form highly symmetric layouts,
in which even human demonstrator will have difficulty with
choosing the path. Figure 3 (a), (c), (d) show that the agent
is very likely to choose some corner as its initialized position
and wait for the demonstration feeding.

IV. EXPERIMENTS

To evaluate our framework, we perform multiple experi-
ments on reaching the target object in a simulated robotics
environment developed in MuJoCo [33] as shown in Figure 4.
A video showing our experiments is available at https://youtu.
be/6NeZo5rELBw

A. Experiment Setup

Our environment consists of a 3D maze and a simulated
ant agent. The maze is 17mm*17mm with different layouts in
each episode. We generate an inconstant number of rectangle
walls with Depth First Search in the maze. The ant agent is
equivalent to the standard Rllab Ant with a gear range of (-
30, 30). We task our agent to reach the specified position in
the maze with a time limit of 500 steps. It gets a reward of
0 when it reaches the goal and a reward of -1 otherwise. We
run the task on three different experiments: ”Pure DAgger”,
”Noise Based”, ”Multi Policy”. For our experiments, we find
twelve human operators to complete 100 demonstration tasks
for each algorithm. The demonstrators are required to be able
to robustly guide the ant agent to reach the final goal. The
expert should always show a subgoal position toward the goal
but also make sure not be too far from the current position of
the agent.

B. Implementation Details

We compare the performance of the tasks with three differ-
ent algorithms, ”Pure DAgger”, ”Noise Based”, ”Multi Pol-
icy”. For ”Pure DAgger”, it is our baseline HHIRL algorithm
with a high-level meta-controller using DAgger and a low-level
controller using DDPG. In DAgger, starting from a probability,
we use a decreasing probability with a factor of 1.05 for

https://youtu.be/6NeZo5rELBw
https://youtu.be/6NeZo5rELBw


(a) maze A (b) maze B

(c) maze C (d) maze D

Fig. 4. Maze with different layouts

(a) Success Rate (b) Expert Cost (c) Attempts

Fig. 5. Experiment Results over 300 test episodes. (a) Success rate per episode. (b) Success rate versus the expert cost. (c) Attempts per episode.

the agent to take the human demonstration position as its
next subgoal. For ”Noise Based”, we add the noise-based AL
method to initialize the start location of the agent and train
with the same HHIRL algorithm as ”Pure DAgger”. For ”Multi
Policy”, we add the multi-policy AL method to initialize the
start location and also train with the same HHIRL algorithm.

We train all three algorithms for 100 episodes with human
demonstrators continuously giving subgoal positions. One
episode is terminated either when the ant agent reaches the
goal or it falls or at the time limit. For ”Pure DAgger”,
we apply the algorithm for all the 100 episodes. For ”Noise
Based” and ”Multi Policy”, we use ”Pure DAgger” to train
the first 50 episodes, and use the corresponding algorithm to
train the remaining 50 episodes. We test the algorithms over
300 test episodes and record the data.

We measure the performance by success rate, expert cost,
and attempts. Success Rate is defined as the average rate
of successful task completion over 100 test episodes, on

the random environment not used for training. Expert Cost
is defined as the average number of demonstrations in one
episode over the test episodes. And Attempt is defined as the
average number of subgoals generated for the agent to reach
the goal in one episode over the test episodes. The results are
shown in the following section.

We also test HAC algorithm and has already mentioned the
training process and testing results in Method Section A.

C. Results and Discussion
We first test our autoencoder embedding and find that the

agent can not get enough prior knowledge of the environment
from the embedding. The agent always chooses to move
toward the center of the maze. We discuss that the result is
caused by the insufficient training data and episodes of the
embedding as well as the image over-compression discussed
in the Method section B.

Then we discuss the results of our experiments. The Fig-
ure 5(a) displays the median as well as the range(variance)



from minimum to maximum success rate over 12 human
demonstration learning policies. It shows that all of the three
algorithms have an increased success rate approaching 60%
which outperforms flat HAC algorithm(45%). This is because
providing human demonstration interactively correct the agent
from generating a subgoal position that is too far from the
optimal path. Though the three algorithms have a similar
ascending trend, they actually have different variances. The
”Noise Based” has the largest variance while the ”Multi
Policy” has the smallest variance. As shown, ”Noise Based”
is less stable than the other two. The Figure 5(b) displays the
same success rate as a function of the expert cost. All three
algorithms require more expert costs to get a higher success
rate. Among three algorithms, ”Multi Policy” saves the most
in expert cost and ”Noise Based” saves the least. It is because
the ”Noise Based” generates too many unusual positions and
makes the learning policy less stable and relies more on human
demonstrators. The Figure 5(c) displays the attempts the agent
tries on each episode. And all of them decrease suddenly when
trained for the first 20 episodes, and have a slow decrease
after 20 episodes. There is no obvious difference among them.
Through the results, we conclude that AL does help choose the
state or position that needs guidance and multi-policy AL does
do better than the flat HHIRL algorithm. However, AL might
also increase the uncertainty of the agent due to its asking
providing guidance from the corner or the position that human
may also not so certain about. Apart from the results, we also
find that our performance is largely depended on the quality
of the demonstration. Therefore, it is meaningful to help the
novice to provide good demonstrations for experiments.

V. CONCLUSION AND FUTURE WORK

We presented AHIRL, a hierarchical guidance framework
and have shown how AHIRL improves learning multi-level
policies in continuous tasks and reduces the cost of expert
feedback in both hierarchical reinforcement learning and
active imitation learning. In future work, we will consider
using Convolutional Neural Network (CNN) for high-level
policy learning followed by the idea of Averaged Deep Q
Networks(Averaged-DQN) [2]. Rather than constructing a
deep encoder embedding, train the image data of the environ-
ment with DAgger and output the subgoals. Our IL approach .
Due to that, we consider improve IL algorithm by leveraging
cost information using Aggregate Values to Imitate method
(AggreVaTe) [28] or differentiable AggreVaTe (AggreVaTeD)
[31].

ACKNOWLEDGMENT

This is a course project for CS 8803 Interactive Robot
Learning in Georgia Institute of Technology. We thank Prof.
Matthew Gombolay and Muyleng Leng for their guidance and
assistance with this work.

REFERENCES

[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel
Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel,
and Wojciech Zaremba. Hindsight experience replay. In Advances in
Neural Information Processing Systems, pages 5048–5058, 2017.

[2] Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance
reduction and stabilization for deep reinforcement learning. In Proceed-
ings of the 34th International Conference on Machine Learning-Volume
70, pages 176–185. JMLR. org, 2017.

[3] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic
architecture. In Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[4] Kalesha Bullard, Yannick Schroecker, and Sonia Chernova. Active
learning within constrained environments through imitation of an expert
questioner. arXiv preprint arXiv:1907.00921, 2019.

[5] Sonia Chernova and Manuela Veloso. Interactive policy learning through
confidence-based autonomy. Journal of Artificial Intelligence Research,
34:1–25, 2009.

[6] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning.
In Advances in neural information processing systems, pages 271–278,
1993.

[7] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq
value function decomposition. Journal of artificial intelligence research,
13:227–303, 2000.

[8] Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-
supervised visual planning with temporal skip connections. arXiv
preprint arXiv:1710.05268, 2017.

[9] Alexander Fabisch and Jan Hendrik Metzen. Active contextual policy
search. The Journal of Machine Learning Research, 15(1):3371–3399,
2014.

[10] Chelsea Finn and Sergey Levine. Deep visual foresight for planning
robot motion. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 2786–2793. IEEE, 2017.

[11] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine,
and Pieter Abbeel. Deep spatial autoencoders for visuomotor learning.
In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 512–519. IEEE, 2016.

[12] Danijar Hafner, Dustin Tran, Alex Irpan, Timothy Lillicrap, and James
Davidson. Reliable uncertainty estimates in deep neural networks using
noise contrastive priors. arXiv preprint arXiv:1807.09289, 2018.

[13] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul,
Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband,
et al. Deep q-learning from demonstrations. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[15] Abdul Rahman Kreidieh, Samyak Parajuli, Nathan Lichtle, Yiling You,
Rayyan Nasr, and Alexandre M Bayen. Inter-level cooperation in
hierarchical reinforcement learning. arXiv preprint arXiv:1912.02368,
2019.

[16] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenen-
baum. Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation. In Advances in neural information
processing systems, pages 3675–3683, 2016.

[17] Sascha Lange and Martin Riedmiller. Deep auto-encoder neural net-
works in reinforcement learning. In The 2010 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2010.

[18] Sascha Lange, Martin Riedmiller, and Arne Voigtländer. Autonomous
reinforcement learning on raw visual input data in a real world applica-
tion. In The 2012 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2012.

[19] Sascha Lange and Martin A Riedmiller. Deep learning of visual control
policies. In ESANN, 2010.

[20] Hoang M Le, Nan Jiang, Alekh Agarwal, Miroslav Dudı́k, Yisong Yue,
and Hal Daumé III. Hierarchical imitation and reinforcement learning.
arXiv preprint arXiv:1803.00590, 2018.

[21] Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learn-
ing multi-level hierarchies with hindsight. 2018.

[22] Mingkun Li and Ishwar K Sethi. Confidence-based active learning. IEEE
transactions on pattern analysis and machine intelligence, 28(8):1251–
1261, 2006.



[23] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[24] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine.
Data-efficient hierarchical reinforcement learning. In Advances in Neural
Information Processing Systems, pages 3303–3313, 2018.

[25] Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee,
and Sergey Levine. Why does hierarchy (sometimes) work so well in
reinforcement learning? arXiv preprint arXiv:1909.10618, 2019.

[26] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba,
and Pieter Abbeel. Overcoming exploration in reinforcement learning
with demonstrations. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 6292–6299. IEEE, 2018.

[27] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne.
Deeploco: Dynamic locomotion skills using hierarchical deep reinforce-
ment learning. ACM Transactions on Graphics (TOG), 36(4):41, 2017.

[28] Stephane Ross and J Andrew Bagnell. Reinforcement and imi-
tation learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979, 2014.

[29] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of
imitation learning and structured prediction to no-regret online learning.
In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 627–635, 2011.

[30] David Silver, J Andrew Bagnell, and Anthony Stentz. Active learning
from demonstration for robust autonomous navigation. In 2012 IEEE
International Conference on Robotics and Automation, pages 200–207.
IEEE, 2012.

[31] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and
J Andrew Bagnell. Deeply aggrevated: Differentiable imitation learning
for sequential prediction. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3309–3318. JMLR.
org, 2017.

[32] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps
and semi-mdps: A framework for temporal abstraction in reinforcement
learning. Artificial intelligence, 112(1-2):181–211, 1999.

[33] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[34] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas
Heess, Max Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal
networks for hierarchical reinforcement learning. In Proceedings of the
34th International Conference on Machine Learning-Volume 70, pages
3540–3549. JMLR. org, 2017.


	Introduction
	Related Work
	Dataset Aggregation
	Hierarchical Reinforcement Learning
	Neuron Encoder
	Active Learning
	Combining RL and LfD

	Methods
	Hierarchical Imitation and Reinforcement Learning
	HAC
	DAgger

	Autoencoder
	A neural autoencoder
	Training

	Active Learning
	Encoding to AHIRL
	Noise-Based
	Multiple-Policy
	Comments


	Experiments
	Experiment Setup
	Implementation Details
	Results and Discussion

	Conclusion and Future Work
	References

